Sakai Lab
Seigo SAKAI
   酒井 清吾   Seigo SAKAI
職   名:准教授
研究組織:大学院工学研究院
       システムの創生部門/システムのデザイン分野
教育組織:大学院工学府
       システム統合工学専攻/機械システム工学コース
学部組織:工学部生産工学科
担当講義:<大学院>複合伝熱論,複合伝熱特論
       <学  部>内燃機関
       <第二部>内燃機関
専   門:熱・流体工学,伝熱工学
連絡先  :E-mail
酒井研究室ホームページ
関連リンク
● 研究テーマと概要 ●
 地球の気象現象や燃焼場を数値解析により予測するには、二酸化炭素や水蒸気などのふく射性ガスの存在が重要 である。ふく射性ガスにより散乱、吸収、再放射が起こり、熱伝導、対流伝熱、ふく射伝熱が複雑に絡み合った 熱流動場となるからである。二酸化炭素や水蒸気などのふく射性ガスは温室効果ガスとも呼ばれ、ふく射の波長 に応じた強い選択吸収性を持っている。そこで本研究室では、ふく射伝熱を中心に、主に数値シミュレーション を用いて、複合伝熱流動場の基礎から応用分野までの諸現象・問題に関する研究を行うものとする。
1.散乱を伴うふく射−自然対流の複合伝熱に関する研究
2.気象現象における流動場不安定性に関する研究
3.燃焼場におけるふく射熱損失の影響に関する研究
4.燃焼炉内のふく射−対流複合伝熱に関する研究
5.火災旋風に関する実験および数値シミュレーション

● 主な公表論文 ●
(1) S.Maruyama, Y.Takeuchi, S.Sakai, Z.Guo: Improvement of computational time in radiative heat transfer of three-dimensional participating media using the radiation element method, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.73, (2002), pp.239-248.
(2) S.Maruyama, K.Ohno, A.Komiya, S.Sakai: Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches, Journal of Crystal Growth, Vol.245, (2002), pp.278-288.
(3) S.Sakai, S.Maruyama: A Fast Approximated Method of Radiative Exchange for Combined Heat Transfer Simulation, Numerical Heat Transfer Part B: Fundamentals, Vol.44, No.5, (2003), pp.473-487.
(4) S.Maruyama, Y.Mori, S.Sakai: Nongray radiative heat transfer analysis in the anisotropic scattering fog layer subjected to solar irradiation, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.83, (2004), pp.361-375.
(5) Atsushi Sakurai, Shigenao Maruyama, Seigo Sakai and Toru Nishikawa, “The effect of Three-dimensional Radiative Heat Transfer in Clouds Field Using the Radiation Element Method”, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.93, (2005-6), pp.79-87.
(6) M. Khoukhi, S. Maruyama, and S. Sakai, “Non-gray calculation of plate solar collector with low iron glazing taking into account the absorption and emission with a glass cover”, Desalination, Vol.209, (2007), pp.156-162.

Participating gases, such as carbon dioxide, water vapor and so on, play an important role when numerically predicting radiative heat transfer in climate on the earth, or in combustion phenomena, because scattering, absorption and re-emission occur due to the existence of participating gases. Participating gases are called as "Global Warming Gases", and show spectral dependence of radiative properties. Heat and fluid flow are complicated because of combination among conduction, convection and radiation. Therefore, the research subjects are the fundamentals of the combined heat transfer mainly due to the radiative heat exchange, and those application problems.
1. Radiative-convective heat transfer with scattering
2. Instability study of flow field in climate
3. Radiative heat loss in combustion phenomena
4. Radiative-convective heat transfer in combustor
5. Experimental and numerical study of firestorm

BACK