Nishino Lab
Koichi NISHINO
   西野 耕一 Koichi NISHINO
職   名:教授
研究組織:大学院工学研究院
       システムの創生部門/システムのデザイン分野
教育組織:大学院工学府
       システム統合工学専攻/機械システム工学コース
学部組織:工学部生産工学科
担当講義:<大学院>乱流現象論,乱流計測論
       <学  部>熱移動論,応用機械設計・製図T,
        生産機械工学実験T&U,力学演習U,
        熱エネルギー有効利用学
       <第二部>生産実験T&U
専   門:熱・流体工学,乱流,乱流計測
連絡先  :E-mail
西野研究室ホームページ
関連リンク
マランゴニ対流モデル化研究報告
日本機械学会熱工学部門
● 研究テーマと概要 ●
 西野研究室では、熱・流体工学(Thermal and Fluids Engineering)に関わる現象について、主として光・画像計測を利用した新しい測定手法の開発・実用化を行い、それを利用した熱・流体現象の多次元情報の測定、さらに測定技術と非線形制御理論とをハイブリッド化した熱・流体現象の能動制御への検討を進めている。
 平成13年1月現在で行っている具体的な研究テーマは以下の通りである。
(1) 表面張力対流(マランゴニ対流)に関する地上実験と宇宙実験:微小重力環境では気液界面での温度・濃度勾配に起因する表面張力差が重要な対流駆動力となる。このテーマでは、温度勾配駆動の表面張力対流の振動流遷移・乱流遷移について、国際宇宙ステーション(ISS)での微小重力実験に向けて研究している。
(2) 分散混相乱流の画像計測と数値解析:乱流中を流れる液滴や固体粒子の挙動を画像計測する新しい測定方法を開発するとともに、粒子挙動の確率論的モデル方程式に基づく数値解析を行っている。また、高速非定常現象であるディーゼル燃料噴霧の画像診断を行い、燃料液滴の挙動を調べている。
(3) マイクロ流れの可視化計測:分散混相乱流の画像計測手法を発展させて、ミクロンからミリオーダのマイクロ流れの可視化計測を進めている。特に、鎖状高分子の希薄溶液に見られる乱流抵抗低減(トムズ効果)について、マイクロ流れにおけるメカニズムの把握を目指している。
(4) 熱・流動場の能動制御:非線形制御に適するニューラルネットワークを用いて、多次元・多自由度系である熱・流動場の能動制御の方法論の構築を進めている。伝熱面温度分布の均一化制御などへの応用を目指している。
Laser-induced-fluorescent image of diesel fuel spray and droplet velocity distribution measured with particle image velocimetry

● 主な公表論文 ●
(1) Cao, Z.-M., Nishino, K., Mizuno, S. and Torii, K., 2001, PIV measurements of internal structure of diesel fuel spray, Experiments in Fluids, in press.
(2) Cao, Z.-M., Nishino, K., Mizuno, S. and Torii, K., 2000, Spray structure and associated droplet velocity in the initial stage of diesel fuel injection, JSME International Journal, Series B, Vol. 43, No. 4, pp. 582-589.
(3) Nishino, K., Kato, H. and Torii, K., 2000, Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow, Measurement Science and Technology, Vol. 11, pp. 633-645.
(4) Matida, E. A., Nishino, K. and Torii, K., 2000, Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow, International Journal of Heat and Fluid Flow, Vol. 21, pp. 389-402.
(5) Nishino, K., Emori, T., Kawamura, H., Kawasaki, K., Makino K., Yoda, S. and Kawasaki, H., 1998, Three-dimensional PTV measurement of Marangoni convection in a sounding rocket experiment, CD-ROM Proceedings of the International Conference on Optical Technology and Image Processing (VSJ-SPIE98), Yokohama, Japan, Paper AB032.

Research activities of Associate Prof. Nishino's laboratory encompass (1) the development of optical-and-imaging-based techniques for measuring complex phenomena in thermal and fluids engineering, (2) their application to multi-dimensional/multi-freedom systems such as turbulence and dispersed two-phase flows, and (3) the active control of complex phenomena by hybrid use of measuring techniques developed and non-linear control theories. The research projects in progress currently as of January 2001 are as follows:
  Thermocapillary convection experiment on ground and in microgravity: the surface tension-driven convection caused by the temperature gradient along gas-liquid interfaces in an important form of convection in microgravity. This project is to clarify the transition from laminar state to oscillatory/turbulent states of thermocapillary convection in liquid bridge, performed partly as ground-based tests for future space experiments in the International Space Station (ISS).
  Imaging measurement and numerical simulation of dispersed two-phase flows: new imaging-based techniques for measuring behaviors of particles, such as droplets and solid particles, in turbulent flows are developed, and numerical simulations based on stochastic model equations are performed. Also studied is the behavior of diesel fuel droplets injected from a high-pressure nozzle.
  Visualization and measurement of micro flows: the measuring techniques developed for dispersed two-phase flows are extended to the measurement of micro flows mm or mm in typical length scale. Particularly, the effect of high-polymer chains in water to the turbulent drag reduction in micro flows is investigated.
  Active control of thermal and fluids phenomena: this study aims at proposing and validating a unique methodology for active control of complex thermal and fluids phenomena. The approach is based on the hybrid use of sophisticated measuring techniques and non-linear control theories such as neural network.

BACK